Loading Data¶
ezfit works with pandas DataFrames, so loading data is straightforward.
CSV Files¶
The most common format:
import pandas as pd
df = pd.read_csv("data.csv")
print(df.head())
Your CSV should have columns for: - Independent variable (e.g., “x”, “time”, “energy”) - Dependent variable (e.g., “y”, “intensity”, “signal”) - Optional: Error on dependent variable (e.g., “yerr”, “error”, “sigma”)
Tab-Delimited Files¶
For space-separated data:
df = pd.read_csv("data.txt", sep=r"\s+", skiprows=1)
Skipping Rows¶
If your file has header information:
df = pd.read_csv("data.csv", skiprows=2) # Skip first 2 rows
Data Cleaning¶
Remove bad data points:
# Remove points where x < 0
df = df[df["x"] > 0]
# Remove outliers
df = df[df["y"] < 100]
Verify Your Data¶
Always plot your data first:
import matplotlib.pyplot as plt
df.plot(x="x", y="y", yerr="yerr", fmt="o")
plt.show()
Example Data¶
ezfit includes utilities to generate example data for testing:
from ezfit.examples import generate_linear_data
df = generate_linear_data(n_points=50, slope=2.0, intercept=1.0, seed=42)