Constrained Fitting¶
Example of fitting with parameter constraints.
Code¶
import pandas as pd
import matplotlib.pyplot as plt
import ezfit
from ezfit.examples import generate_multi_peak_data
# Generate data with two peaks
df = generate_multi_peak_data(n_points=200, seed=42)
from ezfit import gaussian
def two_peaks(x, A1, c1, w1, A2, c2, w2, B):
return gaussian(x, A1, c1, w1) + gaussian(x, A2, c2, w2) + B
# Fit with constraint: peak 1 narrower than peak 2
model, ax, ax_res = df.fit(
two_peaks, "x", "y", "yerr",
method="minimize",
fit_kwargs={"method": "SLSQP"},
A1={"value": 7.0, "min": 0, "max": 15},
c1={"value": 7.0, "min": 5, "max": 9},
w1={"value": 2.0, "min": 0.5, "max": 5, "constraint": "w1 < w2"},
A2={"value": 5.0, "min": 0, "max": 15},
c2={"value": 12.0, "min": 10, "max": 14},
w2={"value": 3.0, "min": 0.5, "max": 5},
B={"value": 0.5, "min": 0, "max": 2}
)
plt.show()
print(model)
print(f"\\nConstraint satisfied: {model['w1'].value < model['w2'].value}")